A formal framework for multi-view modeling and the multi-view consistency problem

Maria Pittou (joint work with Prof. Stavros Tripakis)

Aristotle University, School of Sciences, Department of Mathematics

Seminar on TCS, 19/12/2018

System modeling

- Powerful technique for reasoning about systems
- Provides abstractions of the system under development
- Detects errors and improves performance

System modeling formalisms

- State machines and automata

- Differential equations \rightarrow physical plant of CPSs
- Timed and Hybrid Automata

Figures from: Viewpoints, Formalisms, Languages, and Tools for Cyber-Physical Systems, 2012, D. Broman et al.

Complex systems

Modeling of large and heterogeneous systems

The construction of any large and complex system involves multiple design teams with their own perspectives of the system.

The multiple views of a system

The construction of any large and complex system involves multiple design teams with their own view of the system.

Multi-view modeling (MVM)

In multi-view modeling (MVM for short) the different stakeholders derive separate but yet related models, called views, of the same system.

Multi-view consistency

One of the main challenges in multi-view modeling is to ensure consistency among the different views.

Outline

- Motivation for multi-view modeling
- Related work
- Second Formal Framework for multi-view modeling
- Contributions to the formal framework
- **o** Generic algorithm for checking view consistency
- Challenges in MVM and future work

- Early work on multi-view modeling
- Multi-modeling languages
- Multi-view modeling for embedded and cyber-physical systems
- Other approaches to multi-view modeling
- A formal framework for multi-view modeling

Early work on MVM

- Viewpoints: A framework for integrating multiple perspectives in system development, 1992, A. Finkelstein et al.
- One of the first papers that studies the problem
- Informal framework illustrated by a lift system
- Tool support discussion

Early work on MVM

 Viewpoints: A framework for integrating multiple perspectives in system development, 1992, A. Finkelstein et al.

Early work on MVM

- Viewpoints: A combined reference model- and view- based approach to system specification, 1997, G. Engels et al.
- A reference model is used to generate the views

- View inconsistencies and integration
- Specification by graph transformations and illustration by a banking system

Early work on MVM

• Living with inconsistency in large systems, 1988, R. W. Schwanke and G. E. Kaiser

- Consistency with respect to type safety in programming languages
- Inconsistency is sometimes unavoidable and more effective
- CONMAN programming environment

Multi-modeling languages

- Multi-view modeling is supported by multi-modeling languages
- Multi-modeling languages provide diagrams to specify abstractions of software and hardware systems
- UML and SysML are multi-modeling languages

Multi-modeling languages

- Semantically configurable consistency analysis for class and object diagrams, 2011, S. Maoz et al.
- Views of a system are described by class and object diagrams

Multi-modeling languages

 Semantically configurable consistency analysis for class and object diagrams, 2011, S. Maoz et al.

- Views of a system are described by class and object diagrams
- Semantic consistencies are investigated
- Automated consistency checking

Multi-modeling languages

- Vooduu: Verification of Object-Oriented Designs Using UPPAAL, 2004, K. Diethers and M. Huhn
- Views are state or sequence diagrams with timing constraints
- Multi-view consistency is reduced to model checking
- Tool that enables verification of UML diagrams

Multi-view modeling for embedded and cyber-physical systems

 Viewpoints, Formalisms, Languages, and Tools for Cyber-Physical Systems, 2012, D. Broman et al.

Multi-view modeling for embedded and cyber-physical systems

 A Characterization of Integrated Multi-View Modeling in the Context of Embedded and Cyber-Physical Systems, 2013, M. Persson et al.

- View relations for describing multi-view systems
- Main characteristics of views and basic challenges in multi-view modelling
- A nice survey on different approaches to MVM

Multi-view modeling for embedded and cyber-physical systems

 A Characterization of Integrated Multi-View Modeling in the Context of Embedded and Cyber-Physical Systems, 2013, M. Persson et al.

Content relationships between views.

Multi-view modeling for embedded and cyber-physical systems

 A Characterization of Integrated Multi-View Modeling in the Context of Embedded and Cyber-Physical Systems, 2013, M. Persson et al.

- View relations for describing multi-view systems
- Main characteristics of views and basic challenges in multi-view modelling
- A nice survey on different approaches to MVM

Other approaches to multi-view modeling

- Metamodeling
- Aspect-Oriented Modeling
- Interface Theories

- Basic problems in multi-view modeling, 2014, J. Reineke and S. Tripakis.
- Basic problems in multi-view modeling, 2016 (journal version), J.
 Reineke, C. Stergiou and S. Tripakis.
- Checking multi-view consistency of discrete systems with respect to periodic sampling abstractions, 2018, M. Pittou, P. Manolios, J. Reineke and S. Tripakis.

Methods on MVM

Methods on MVM

Outline

- Motivation for multi-view modeling
- Related work
- Formal framework for multi-view modeling
- Contributions to the formal framework
- Generic algorithm for checking view consistency
- Ohallenges in MVM and future work

What should be formalized

Problem to be solved

Given a (finite) set of views, are they consistent?

 \downarrow

- 1) How are the views (and the system) defined?
- 2) How are the views derived from the system?
- 3) What does view consistency mean?
- 4) How do we synthesize a system from its views?

System, views and abstraction functions

Systems and views are defined semantically.

- System S: set of behaviors
- View V: set of behaviors
- Abstraction function V = a(S)

Views and their domain-examples

Views are intuitively an incomplete picture of a system.

- Some behaviors may be missing from the view
- Some parts of a behavior itself may be missing in the view.
- A view may be obtained by some other kind of transformation

Examples from: Basic problems in multi-view modeling, 2014, J. Reineke and S. Tripakis.

System, views, and abstraction functions notations

- *U* is the set of all possible system behaviors
- $S \subseteq U$ is a system
- D_i denotes the set of view behaviors
- $V_i \subseteq D_i$ is a view
- $a_i: U \to D_i$ is an abstraction fuction

The multi-view consistency problem

The multi-view consistency problem

The multi-view consistency problem

The multi-view consistency problem

View consistency

The views V_1, \ldots, V_n over view domains $D_1, \dots D_n$ are consistent with respect to the abstraction functions a_1, \ldots, a_n , if there exists a system S over U so that

$$V_1 = a_1(S), \ldots, V_n = a_n(S).$$

The multi-view consistency problem

View consistency

The views V_1, \ldots, V_n over view domains $D_1, \ldots D_n$ are consistent with respect to the abstraction functions a_1, \ldots, a_n , if there exists a system S over U so that $V_1 = a_1(S), \ldots, V_n = a_n(S)$.

- We call such a system S a witness system to the consistency of V_1, \ldots, V_n .
- If there is no such system, then we say that the views are inconsistent.

Consistency as a special case of conformance

- Consistency is described by strict equality V = a(S).
- Consistency is a special case of conformance.
- Conformance expresses how faithful is a view to a system.

Consistency as a special case of conformance

- Conformance expresses how faithful is a view to a system.
- A view conforms to a system w.r.t. a iff $V \supseteq a(S)$.
- Consistency V = a(S) is a special case of conformance.

Outline

- Motivation for multi-view modeling
- Related work
- Formal framework for multi-view modeling
- Contributions to the formal framework
- Generic algorithm for checking view consistency
- Ohallenges in MVM and future work

- Basic problems in multi-view modeling, 2014.
 - → **System, Views**: symbolic discrete systems (transition systems).
 - → Abstraction functions: variable hidings.

- Basic problems in multi-view modeling, 2014.
 - → **System, Views**: symbolic discrete systems (transition systems).
 - → **Abstraction functions:** variable hidings.

- Basic problems in multi-view modeling, 2014.
 - → **System, Views**: symbolic discrete systems (transition systems).
 - → **Abstraction functions:** variable hidings.

- Basic problems in multi-view modeling (journal version), 2017.
 - \rightarrow **System, Views**: either finite automata or ω -finite automata
 - ightarrow **Abstraction functions:** projections of an alphabet of events onto a subalphabet.

- Checking multi-view consistency of discrete systems with respect to periodic sampling abstractions, 2018.
 - ightarrow **System, Views**: symbolic transition systems or Buchi automata
 - → Abstraction functions: timing abstractions (periodic samplings)

→ A necessary and sufficient condition for view consistency independent of the particular instantiation of systems, views, and abstraction functions

Motivation for the instantiations of formal MVM framework

- Buchi automata and symbolic transition systems are prominent modeling structures
- Both are used by widespread verification tools such as SMV or Spin
- Sampling (time-driven/periodic, or event-driven) is a widely used mechanism in observation, control, embedded software etc
 - ightarrow example: drive-by-wire system in a modern car (sensors are periodically sampling some physical values)

Outline

- Motivation for multi-view modeling
- Related work
- Formal framework for multi-view modeling
- Contributions to the formal framework
- Generic algorithm for checking view consistency
- Ohallenges in MVM and future work

Canonical witness system candidate

Canonical witness system candidate

- V_1, \ldots, V_n are views
- a_1, \ldots, a_n respective abstraction functions

$$S = \bigcap_{i=1}^n a_i^{-1}(V_i)$$

Theorem

 V_1,\ldots,V_n are consistent iff for all $i=1,\ldots,n$ it holds that $a_i(S)=V_i$.

 \hookrightarrow The canonical witness S is the most general witness.

Generic algorithm for checking view consistency

Canonical witness system candidate

- V_1, \ldots, V_n are views
- a_1, \ldots, a_n respective abstraction functions

$$S=\bigcap_{i=1}^n a_i^{-1}(V_i)$$

Algorithm to check view consistency

- Compute S, i.e., compute the inverse abstractions $a_i^{-1}(V_i)$ and their intersection.
- **2** Compute $a_i(S)$ and check whether $a_i(S) = V_i$.

*Instantiating the generic algorithm

Algorithm to check view consistency

- **2** Compute $a_i(S)$ and check whether $a_i(S) = V_i$.

Checking consistency of two Büchi automata views

- V_1 and V_2 are nondeterministic Büchi automata (NBA).
- a_1^{-1} and a_2^{-1} are inverse periodic samplings.
- $S = a_1^{-1}(V_1) \cap a_2^{-1}(V_2)$ is NBA intersection.
- $a_1(S)$ and $a_2(S)$ are periodic samplings.
- $a_1(S) = V_1$ and $a_2(S) = V_2$ is an NBA language equivalence problem.

*Checking consistency of discrete systems w.r.t. periodic sampling

Overview of results

- Checking multi-view consistency of discrete systems with respect to periodic sampling abstractions, 2018
- A necessary and sufficient condition for checking view consistency.
- Solution for the multi-view consistency problem for views described by NBA.
- Solution for the multi-view consistency problem for views described by symbolic transition systems.
- Complexity analyses for the various algorithms.

Outline

- Motivation for multi-view modeling
- Related work
- Formal framework for multi-view modeling
- Ontributions to the formal framework
- Generic algorithm for checking view consistency
- Ohallenges in MVM and future work

Main challenges in MVM

- View consistency
- Conformance checking
- View reduction
- Orthogonality of views
- Extendability of views
- Automation, view reuse, change propagation...

Future work

For the formal framework of MVM

- Heterogeneous instantiations of the formal MVM framework.
- Real case study for the formal MVM framework.

Thank you!