Logical directed description of software architectures

Paulina Paraponiari

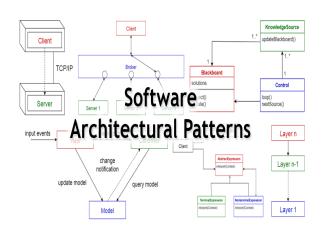
Seminar on Theoretical Computer Science and Discrete Mathematics Aristotle University of Thessaloniki

26/02/2020

• A system consists of several components.

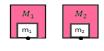
• A system consists of several components.

But how are they connected?



• Two types of components: masters and slaves.

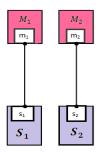
• Two types of components: masters and slaves.





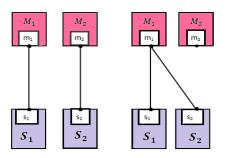
- 1 Masters interact only with slaves, and vice versa.
- Each slave is connected to at most one master.

• Two types of components: masters and slaves.



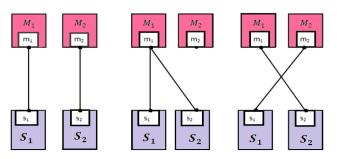
- 1 Masters interact only with slaves, and vice versa.
- Each slave is connected to at most one master.

• Two types of components: masters and slaves.



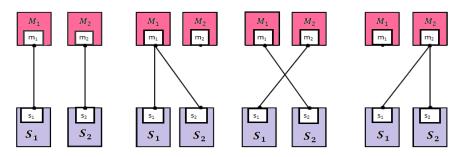
- 1 Masters interact only with slaves, and vice versa.
- Each slave is connected to at most one master.

• Two types of components: masters and slaves.



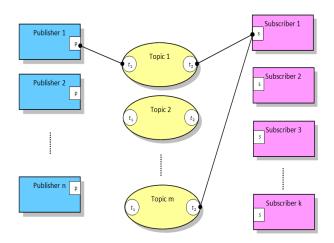
- 1 Masters interact only with slaves, and vice versa.
- Each slave is connected to at most one master.

Two types of components: masters and slaves.



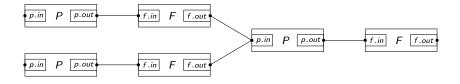
- Masters interact only with slaves, and vice versa.
- Each slave is connected to at most one master.

Publish/Subscribe architecture

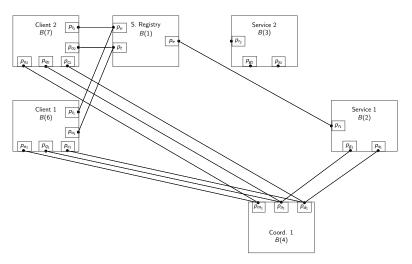


Pipes/Filters architecture

 The p.out port of any pipe can be connected to at most one filter port f.in.



Request/Response architecture



Question: How can we formally describe software architectures?

Question: How can we formally describe software architectures?

Answer: Propositional Configuration Logic (PCL).

A. Mavridou, E. Baranov, S. Bliudze and J. Sifakis, **Configuration Logics: Modelling Architecture Styles**, in Journal of Logical and Algebraic Methods in Programming, vol. 86, num. 1, p. 2-29, 2016.

PCL is an extension of PIL

Definition

Considering a global set of ports P, an interaction is a non-empty set of ports $\alpha \subseteq P$ such that $\alpha \neq \emptyset$. In other words an interaction $\alpha \in I(P)$, where $I(P) = \mathcal{P}(P) \setminus \{\emptyset\}$ and $\mathcal{P}(P)$ is the power set of P.

The Propositional Interaction Logic is a Boolean logic used to characterize the interactions between components on a global set of ports P.

Syntax: The PIL is defined by the grammar:

$$\phi ::= \mathit{true} \mid \mathit{p} \mid \overline{\phi} \mid \phi \vee \phi$$

where $p \in P$.

Syntax: The PIL is defined by the grammar:

$$\phi ::= \mathit{true} \mid \mathit{p} \mid \overline{\phi} \mid \phi \vee \phi$$

where $p \in P$.

Syntax: The PIL is defined by the grammar:

$$\phi ::= \mathit{true} \mid \mathit{p} \mid \overline{\phi} \mid \phi \vee \phi$$

where $p \in P$.

•
$$\alpha \models_i p$$
 iff $p \in \alpha$,

Syntax: The PIL is defined by the grammar:

$$\phi ::= \mathit{true} \mid \mathbf{p} \mid \overline{\phi} \mid \phi \vee \phi$$

where $p \in P$.

- $\alpha \models_i p$ iff $p \in \alpha$,
- $\alpha \models_i \phi_1 \lor \phi_2$ iff $\alpha \models_i \phi_1$ or $\alpha \models_i \phi_2$,

Syntax: The PIL is defined by the grammar:

$$\phi ::= \mathit{true} \mid \mathit{p} \mid \overline{\phi} \mid \phi \vee \phi$$

where $p \in P$.

- $\alpha \models_i p$ iff $p \in \alpha$,
- $\alpha \models_i \phi_1 \lor \phi_2$ iff $\alpha \models_i \phi_1$ or $\alpha \models_i \phi_2$,
- $\alpha \models_i \overline{\phi}$ iff $\alpha \not\models_i \phi$.

PCL Syntax

The Propositional Configuration Logic is an extension of the *PIL* defined by the grammar:

$$f ::= true \mid \phi \mid \neg f \mid f \sqcup f \mid f + f$$

where:

- ϕ : *PIL* formula
- ¬ : complementation operator
- □ : union operator
- + : coalescing operator

$$\gamma \models true$$
, always,

```
\begin{array}{ll} \gamma \models \mathit{true}, & \mathsf{always}, \\ \gamma \models \phi, & \mathsf{if} \ \forall \alpha \in \gamma, \ \alpha \models_{\mathit{i}} \phi \ \mathsf{where} \ \phi \ \mathsf{is} \ \mathsf{an} \ \mathsf{interaction} \ \mathsf{formula} \\ \mathsf{and} \models_{\mathit{i}} \ \mathsf{is} \ \mathsf{the} \ \mathsf{satisfaction} \ \mathsf{relation} \ \mathsf{of} \ \mathit{PIL}, \end{array}
```

```
\begin{array}{ll} \gamma \models \mathit{true}, & \mathsf{always}, \\ \gamma \models \phi, & \mathsf{if} \ \forall \alpha \in \gamma, \ \alpha \models_{\mathit{i}} \phi \ \mathsf{where} \ \phi \ \mathsf{is} \ \mathsf{an} \ \mathsf{interaction} \ \mathsf{formula} \\ & \mathsf{and} \ \models_{\mathit{i}} \ \mathsf{is} \ \mathsf{the} \ \mathsf{satisfaction} \ \mathsf{relation} \ \mathsf{of} \ \mathit{PIL}, \\ \gamma \models \mathit{f}_1 + \mathit{f}_2, & \mathsf{if} \ \mathsf{there} \ \mathsf{exists} \ \gamma_1, \gamma_2 \in \mathit{C}(\mathit{P}) \backslash \emptyset \ \mathsf{such} \ \mathsf{that} \ \gamma_1 \cup \gamma_2 = \gamma \\ & \mathsf{and} \ \gamma_1 \models \mathit{f}_1 \ \mathsf{and} \ \gamma_2 \models \mathit{f}_2, \end{array}
```

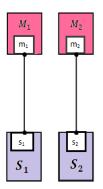
```
\gamma \models true, always, \gamma \models \phi, if \forall \alpha \in \gamma, \alpha \models_i \phi where \phi is an interaction formula and \models_i is the satisfaction relation of PIL, \gamma \models f_1 + f_2, if there exists \gamma_1, \gamma_2 \in C(P) \setminus \emptyset such that \gamma_1 \cup \gamma_2 = \gamma and \gamma_1 \models f_1 and \gamma_2 \models f_2, \gamma \models f_1 \cup f_2, if \gamma \models f_1 or \gamma \models f_2,
```

```
\begin{array}{ll} \gamma \models \mathit{true}, & \mathsf{always}, \\ \gamma \models \phi, & \mathsf{if} \ \forall \alpha \in \gamma, \ \alpha \models_i \phi \ \mathsf{where} \ \phi \ \mathsf{is} \ \mathsf{an} \ \mathsf{interaction} \ \mathsf{formula} \\ & \mathsf{and} \ \models_i \ \mathsf{is} \ \mathsf{the} \ \mathsf{satisfaction} \ \mathsf{relation} \ \mathsf{of} \ \mathit{PIL}, \\ \gamma \models \mathit{f}_1 + \mathit{f}_2, & \mathsf{if} \ \mathsf{there} \ \mathsf{exists} \ \gamma_1, \gamma_2 \in \mathit{C}(\mathit{P}) \backslash \emptyset \ \mathsf{such} \ \mathsf{that} \ \gamma_1 \cup \gamma_2 = \gamma \\ & \mathsf{and} \ \gamma_1 \models \mathit{f}_1 \ \mathsf{and} \ \gamma_2 \models \mathit{f}_2, \\ \gamma \models \mathit{f}_1 \sqcup \mathit{f}_2, & \mathsf{if} \ \gamma \models \mathit{f}_1 \ \mathsf{or} \ \gamma \models \mathit{f}_2, \\ \gamma \models \neg \mathit{f}, & \mathsf{if} \ \gamma \not\models \mathit{f}, \end{array}
```

```
\begin{array}{ll} \gamma \models \mathit{true}, & \mathsf{always}, \\ \gamma \models \phi, & \mathsf{if} \ \forall \alpha \in \gamma, \ \alpha \models_i \phi \ \mathsf{where} \ \phi \ \mathsf{is} \ \mathsf{an} \ \mathsf{interaction} \ \mathsf{formula} \\ & \mathsf{and} \ \models_i \ \mathsf{is} \ \mathsf{the} \ \mathsf{satisfaction} \ \mathsf{relation} \ \mathsf{of} \ \mathit{PIL}, \\ \gamma \models \mathit{f}_1 + \mathit{f}_2, & \mathsf{if} \ \mathsf{there} \ \mathsf{exists} \ \gamma_1, \gamma_2 \in \mathit{C}(\mathit{P}) \backslash \emptyset \ \mathsf{such} \ \mathsf{that} \ \gamma_1 \cup \gamma_2 = \gamma \\ & \mathsf{and} \ \gamma_1 \models \mathit{f}_1 \ \mathsf{and} \ \gamma_2 \models \mathit{f}_2, \\ \gamma \models \mathit{f}_1 \cup \mathit{f}_2, & \mathsf{if} \ \gamma \models \mathit{f}_1 \ \mathsf{or} \ \gamma \models \mathit{f}_2, \\ \gamma \models \mathit{f}_1 \cap \mathit{f}_2, & \mathsf{if} \ \gamma \models \mathit{f}_1 \ \mathsf{and} \ \gamma \models \mathit{f}_2. \\ \end{array}
```

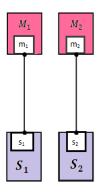
Consider the first Architecture scheme:

- $\{m_1, s_1\}$
- $\{m_2, s_2\}$



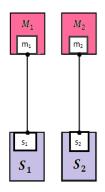
Consider the first Architecture scheme:

- $\{m_1, s_1\} \models_i m_1 \wedge s_1 \wedge \overline{m_2} \wedge \overline{s_2}$
- $\{m_2, s_2\}$



Consider the first Architecture scheme:

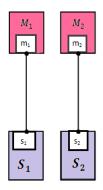
- $\{m_1, s_1\} \models_i m_1 \wedge s_1 \wedge \overline{m_2} \wedge \overline{s_2}$
- $\{m_2, s_2\} \models_i m_2 \wedge s_2 \wedge \overline{m_1} \wedge \overline{s_1}$



Consider the first Architecture scheme:

•
$$\{m_1, s_1\} \models_i \overbrace{m_1 \wedge s_1 \wedge \overline{m_2} \wedge \overline{s_2}}^{\psi_{11}}$$

•
$$\{m_2, s_2\} \models_i \overbrace{m_2 \wedge s_2 \wedge \overline{m_1} \wedge \overline{s_1}}^{\varphi_{22}}$$



Consider the first Architecture scheme:

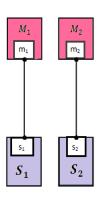
There are two interaction sets between its components:

•
$$\{m_1, s_1\} \models_i \overbrace{m_1 \wedge s_1 \wedge \overline{m_2} \wedge \overline{s_2}}^{\psi_{11}}$$

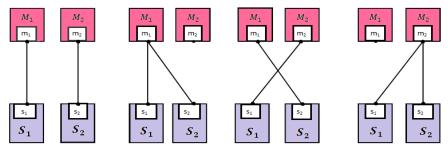
•
$$\{m_2, s_2\} \models_i \overbrace{m_2 \wedge s_2 \wedge \overline{m_1} \wedge \overline{s_1}}^{\phi_{22}}$$

The configuration set that satisfies the architecture on the right is:

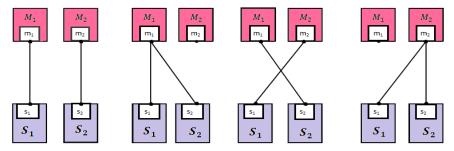
•
$$\{\{m_1, s_1\}, \{s_2, m_2\}\} \models \phi_{11} + \phi_{22}$$



Given two slave components and two master components we get the following four architectures:



Given two slave components and two master components we get the following four architectures:

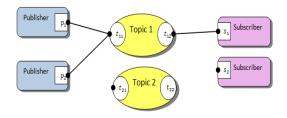


• The PCL formula f that describes the architecture is:

$$f = \bigsqcup_{i,i' \in \{1,2\}} (\phi_{1i} + \phi_{2i'})$$

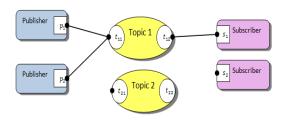
where $\phi_{ji} = s_j \wedge m_i \wedge \overline{s_{j'}} \wedge \overline{m_{i'}}$ for $j, j' \in \{1, 2\}$ and $j \neq j'$.

Publish/Subscribe architecture



Let that there are two publishers, two topics and two subscribers.

Publish/Subscribe architecture



Let that there are two publishers, two topics and two subscribers.

•
$$f = \bigsqcup_{i,j \in \{1,2\}} \left(\left(s_i \wedge t_{j2} \wedge \bigwedge_{p \in P \setminus \{s_i,t_{j2}\}} \overline{p} \right) + \left(p_1 \wedge t_{j1} \wedge \bigwedge_{p \in P \setminus \{p_1,t_{j1}\}} \overline{p} \right) \sqcup \left(p_2 \wedge t_{j1} \wedge \bigwedge_{p \in P \setminus \{p_2,t_{j1}\}} \overline{p} \right) \right)$$

Questions

- Given a PCL formula and a configuration set γ , is it always easy to show $\gamma \models f$ or $\gamma \not\models f$?
- Given two PCL formulas f_1, f_2 how can we decide whether $f_1 \equiv f_2$ or not ?

Definition

A full monomial is a monomial which involves all ports. A full monomial m is written as: $m = \bigwedge_{p \in P_+} p \wedge \bigwedge_{p \in P_-} \overline{p}$ such that $P = P_+ \cup P_-$ and $P_+ \cap P_- = \emptyset$.

For example, let $P = \{p, q, r, s, t\}$, which from the monomials below are full?

Definition

A full monomial is a monomial which involves all ports. A full monomial m is written as: $m = \bigwedge_{p \in P_+} p \wedge \bigwedge_{p \in P_-} \overline{p}$ such that $P = P_+ \cup P_-$ and $P_+ \cap P_- = \emptyset$.

For example, let $P = \{p, q, r, s, t\}$, which from the monomials below are full?

- pqr̄st
 √
- pq\(\overline{r}\)t
- prs
 qt
 √

Full Normal Form

Definition

A PCL formula f is said to be in **Full Normal Form** if it can be expressed in the following form:

$$f \equiv \bigsqcup_{i \in I} \sum_{j \in J_i} m_{i,j}$$

where $m_{i,j}$ are **full** monomials for every $i \in I$ and $j \in J_i$.

Full Normal Form

Definition

A PCL formula f is said to be in **Full Normal Form** if it can be expressed in the following form:

$$f \equiv \bigsqcup_{i \in I} \sum_{j \in J_i} m_{i,j}$$

where $m_{i,j}$ are **full** monomials for every $i \in I$ and $j \in J_i$.

• The characteristic that makes full normal form very useful is that for every $i \in I$, there exists a unique configuration set γ_i such that $\gamma_i \models \sum_{j \in J_i} m_{i,j}$.

Theorem

Let P be a set of ports. Then, for every PCL formula f over P we can effectively construct, in doubly exponential time^a, an equivalent PCL formula f' in full normal form. The best run time for the construction of f' is exponential. Furthermore, f' is unique up to equivalence relation.

^aComplexity result proved in P. Paraponiari, G. Rahonis, Weighted propositional configuration logics: A specification language for architectures with quantitative features, *Inform. and Comput.* (accepted). Available at https://arxiv.org/abs/1704.04969.

Full normal form and Master/Slave architecture

The formula that describes the Master/Slave architecture is in full normal form:

$$f = (\phi_{11} + \phi_{22}) \sqcup (\phi_{11} + \phi_{21}) \sqcup (\phi_{12} + \phi_{22}) \sqcup (\phi_{12} + \phi_{21}).$$

Full normal form and Master/Slave architecture

The formula that describes the Master/Slave architecture is in full normal form:

$$f = (\phi_{11} + \phi_{22}) \sqcup (\phi_{11} + \phi_{21}) \sqcup (\phi_{12} + \phi_{22}) \sqcup (\phi_{12} + \phi_{21}).$$

The unique sets that satisfy f are:

- $\gamma_1 = \{\{s_1, m_1\}, \{s_2, m_2\}\}$
- $\gamma_2 = \{\{s_1, m_1\}, \{s_2, m_1\}\}$
- $\gamma_1 = \{\{s_1, m_2\}, \{s_2, m_2\}\}$
- $\gamma_1 = \{\{s_1, m_2\}, \{s_2, m_1\}\}$

• Let f be a PCL formula and γ a configuration set. Is it decidable whether $\gamma \models f$?

• Let f be a PCL formula and γ a configuration set. Is it decidable whether $\gamma \models f$? Yes.

- Let f be a PCL formula and γ a configuration set. Is it decidable whether $\gamma \models f$? Yes.
- Let $I = \{1, \ldots, n\}$ and $f = \bigsqcup_{i \in I} \sum_{j \in J_i} m_{i,j}$.

- Let f be a PCL formula and γ a configuration set. Is it decidable whether $\gamma \models f$? Yes.
- Let $I = \{1, \ldots, n\}$ and $f = \bigsqcup_{i \in I} \sum_{j \in J_i} m_{i,j}$.
- There exists unique sets $\gamma_1, \ldots, \gamma_n$ such that: $\gamma_i \models f$ where $i \in \{1, \ldots, n\}$.

- Let f be a PCL formula and γ a configuration set. Is it decidable whether $\gamma \models f$? Yes.
- Let $I = \{1, \ldots, n\}$ and $f = \bigsqcup_{i \in I} \sum_{j \in J_i} m_{i,j}$.
- There exists unique sets $\gamma_1, \ldots, \gamma_n$ such that: $\gamma_i \models f$ where $i \in \{1, \ldots, n\}$.
- Let a configuration set γ . Then $\gamma \models f$?

- Let f be a PCL formula and γ a configuration set. Is it decidable whether $\gamma \models f$? Yes.
- Let $I = \{1, \dots, n\}$ and $f = \bigsqcup_{i \in I} \sum_{j \in J_i} m_{i,j}$.
- There exists unique sets $\gamma_1, \ldots, \gamma_n$ such that: $\gamma_i \models f$ where $i \in \{1, \ldots, n\}$.
- Let a configuration set γ . Then $\gamma \models f$?
- $\gamma \models f$ iff there exists $i \in \{1, ..., n\}$ such that $\gamma = \gamma_i$.

• Is the equivalence problem decidable?

• Is the equivalence problem decidable? Yes.

- Is the equivalence problem decidable? Yes.
- Let f_1, f_2 be two PCL formulas in full normal form.

- Is the equivalence problem decidable? Yes.
- Let f_1 , f_2 be two PCL formulas in full normal form.
- Let $\gamma_1, \ldots, \gamma_{n_1}$ be the unique sets that satisfy f_1 .

- Is the equivalence problem decidable? Yes.
- Let f_1 , f_2 be two PCL formulas in full normal form.
- Let $\gamma_1, \ldots, \gamma_{n_1}$ be the unique sets that satisfy f_1 .
- Let $\gamma'_1, \ldots, \gamma'_{n_2}$ be the unique sets that satisfy f_2 .

- Is the equivalence problem decidable? Yes.
- Let f_1, f_2 be two PCL formulas in full normal form.
- Let $\gamma_1, \ldots, \gamma_{n_1}$ be the unique sets that satisfy f_1 .
- Let $\gamma'_1, \ldots, \gamma'_{n_2}$ be the unique sets that satisfy f_2 .
- f_1 is equivalent to f_2 $(f_1 \equiv f_2)$ iff:

- Is the equivalence problem decidable? Yes.
- Let f_1, f_2 be two PCL formulas in full normal form.
- Let $\gamma_1, \ldots, \gamma_{n_1}$ be the unique sets that satisfy f_1 .
- Let $\gamma'_1, \ldots, \gamma'_{n_2}$ be the unique sets that satisfy f_2 .
- f_1 is equivalent to f_2 $(f_1 \equiv f_2)$ iff:

 - ② for every $i \in \{1, ..., n_1\}$ there exists $j \in \{1, ..., n_1\}$ such that: $\gamma_i = \gamma'_j$.

Thank you